
Simulation Analysis of Characteristics and

Application of Software-Defined Networks

Ivan Grgurević, Zvonko Kavran, Anthony Pušeljić (student)

Faculty of Transport and Traffic Sciences, University of Zagreb

Department of Information and Communication Traffic

Zagreb, Croatia

ivan.grgurevic@fpz.hr

Abstract - Software-defined network (SDN) is an approach to

computer networking that allows network administrators to

manage network services through abstraction of higher-level

functionality. This research includes comparison of multiple

scenarios of the software-defined network, which are based on

different types of coverage and local area networks (LAN), i.e. a

traditional LAN. Differences are evident in the scenario of

network performance and can be perceived as advantages and

disadvantages of SDN in relation to the traditional network. The

parameters used in the analysis are data rate, packet delay (i.e.

latency), packet loss, throughput, the cost of network

performance and others. The application and the simulation

demonstration of a software-defined network is shown in the

graphical network simulator GNS and emulator Mininet. This

research has analysed the advantages and disadvantages of a

software-defined network over a conventional network, taking

into account various parameters and stakeholders.

Keywords - Software-defined network/networking, simulation

analysis, controller, Application programming interface (API)

I. INTRODUCTION

Nowadays, we are witnessing a very high degree of
application of virtualization technologies with the growing
customer demand for a fast establishment and delivery of
services and placement services within the Cloud Computing
concept. In addition, users require flexible and automated
network environment that is adaptable to current applicative
requirements. Such new challenges require responses by the
application of a different approach in relation to the classical
network infrastructure management. Cloud computing allows
users to store data and install software on the servers that are
connected through the Internet. With the help of a web browser
and special customers, these services are flexible and the users
pay only for what they use.

Software-defined network (SDN) is a network architecture
in which the networks control is separated from the packet
forwarding and it contains the possibility of direct
programming. Such migration of control, which is sometimes
strongly related to an individual network device, in the external
computing devices allows basic infrastructure separation of
applications and network services, which are therefore able to
treat the network as a logical or virtual entity. SDN enables
dynamic adjustment of the network environment to the current
application requirements or the user’s needs, and simplifies
management and increases the scalability of the network,
which is particularly manifested through a simple

implementation of additional network services and
components. An additional benefit of SDN is the possibility of
using the network components from different manufacturers,
basically without having to know how to operate the devices
since the complete network environment is managed from a
single point, or through the SDN controller. The SDN network
architecture consists of a controller SDN, OpenFlow network
devices and a communication channel that connects them.

Today, the largest application of SDN is present in data
centers which are also known as software-defined data centers
(SDDC). Such data centers contain all the elements of the
infrastructure needed for networking, storage, processing
(Central processing unit - CPU), the realization of security and
virtualization, and are being delivered as a service.
Development, provisioning, configuring, and other operations
of the whole infrastructure are separated from the hardware and
executed by the software.

The aim of this research was to conduct an analysis of the
characteristics and the application of software-defined
networks. The analysis is based on a comparison of
conventional networks and software-defined networks with the
display of significant differences. The research includes a
simulation of different network topologies using the graphical
network simulator GNS3 on Linux. For the purposes of the
simulation, it was necessary to specify the differences between
network architecture of traditional networks and software-
defined networks, and to conduct the process of designing
software-defined network via a graphical network simulator
GNS3 and emulator Mininet. The research is in fact an analysis
of different scenarios and parameters (data rate, packet delay,
packet loss, throughput, the cost of network performance, etc.).

II. BACKGROUND AND RELATED WORK

Numerous available articles and research are dealing with
the analysis of the characteristics and architecture of software-
defined networks / networking, and the analysis is mainly
based on the impact due to changes in certain performance of
the network and the application of SDN controller [1], [2], [3].
Within the development of the Internet of Things (IoT)
concept, many authors reveal the application of software-
defined networks / networking and access in the IoT
environment, and thus achieve the differentiation level of
service due to the different needs of IoT in different
(heterogeneous) scenarios, especially related to the wireless
networks [4], [5], [6]. The development of software for the
simulation of the operation of information and communications

networks has achieved efficient testing of various networks and
network elements, ways of networking and the presentation of
various possible scenarios, which is also present within
software-defined networks. Typically used software for the
implementation of software-defined networks simulation is the
OpenNet [7], Mininet [8], ns3 [9] and EstiNet [10]. The article
[11] presents a comparative analysis of the existing simulators
for SDN according to different characteristics and functions.

According to [12], the authors were interested in research
of the SDN technology and its possibilities, and were thereby
using Mininet simulator and POX SDN controllers. The results
were compared with the results obtained by the application of
network devices and the use of "traditional" network. The
throughput in a software-defined network is increased in
comparison to a “traditional" network and the number of lost
packets in a software-defined network is smaller.

Within the SDN analysis conducted by the Open Network
Foundation (ONF) it has been concluded that separate control
and data planes result in better programmability, automation
and better control of the network, which results in scalable and
flexible networks which allow, for example, business
companies to easily adapt to variable business needs [13].
Analyzing the issues of SDN, the Cisco Systems company has
come to the conclusion that SDN greatly helps to simplify
operations by automating and centralizing network business
management [14]. One part of the research also analyzes the
traffic parameters as part of the transport engineering in SDN
networks, using various simulation methods and simulation
experiments [15], [16].

III. OVERVIEW OF CHARACTERISTICS AND ARCHITECTURE

OF SOFTWARE-DEFINED NETWORK

The SDN concept is based on the need to separate and
redefine a network construction, and its implementation uses
the following three principles:

1) Control and forwarding planes: Control planes are

separated from the forwarding planes. Forwarding planes are

still located in the switch, while control planes are moved to

the SDN controller in the form of software.

2) Control intelligence: Control intelligence is centralized

at SDN controller.

3) Network programmability by applications: The network

can be programmed beginning from the applications.

Applications interface can be exposed to the controller to

manipulate the network.

The main objective of SDN is to achieve better

management of networks with large extent and complexity and
to ensure that all logical decisions of control level are made
from the central point. This central access will reduce the need
for the N-number of intelligent nodes in an N-nodes topology.
The basic role of every network software is to program the path
that will allow the traffic to flow. Now, when the dependence
of software on the hardware is reduced, there is no need for
intelligent software to operate on all nodes.

SDN is based on the concept of logical starting of software
in a centralized location and programming of switches using

the southbound Application Program Interfaces (API). Figure 1
shows the logical layers of SDN. At the lowest level there are
network elements such as switches, computers, servers and
other network devices. It is important to note that the switches
are located on top of the lowest layer. The middle layer is a
layer of controller that communicates with the switches.

Figure 1 - Logic layers of SDN

The highest level is the application level in which the user
can define the applications that will allow the definition of the
network flow. As result, a network approaches the applications
as one logic switch thus providing control of the entire network
from one logic point and simplifies the network design and all
of the operations within the network. SDN also simplifies the
operating of the network devices because they no longer have
to understand, but only to process a lot of protocol standards
led only by the instructions of the SDN controller [14].

A. SDN Controller

The central controller (SDN controller) is a software entity
that needs to have a global view on the entire network. The
network operating system, launched logically for the choice of
path, needs to be launched on the central SDN controller. The
controller has an overview of the entire network and it can
determine the optimized flow and program hardware ports. The
basic characteristics of the controller are:

• Detection of end user devices such as laptops,
desktops, printers, mobile terminal devices, etc.

• Detection of network devices that form the network
infrastructure such as switches, routers and wireless
access points.

• Management of network devices topology by
maintaining information about the details of the link
between the network devices and directly connected
terminal devices.

• Control of database maintenance managed by the
controller and performing of necessary coordination
with the devices to ensure the synchronization of flow
entry of devices with that database.

B. Southbound API

Within the architecture of software-defined network, the
southbound API are being used for communication of SDN
controllers with network switches and routers. Southbound
APIs mitigate the efficient network control and allow the SDN

controller to dynamically make changes according to the real-
time requirements and needs.

C. Northbound API

Within the SDN network, northbound APIs are being used
for communication of the SDN controller with the services and
applications launched within the network. Northbound APIs
can be used in order to mitigate the innovations and provide an
efficient orchestration and automatization of network which
can align due to its programmability with the needs of various
applications. Northbound APIs are most critical of all within
the SDN environment, because the value of SDN is related to
innovative applications which can be potentially supported and
provided and they have to support a wide range of applications.

IV. PLANNING OF SOFTWARE-DEFINED NETWORK

Many organizations inforce the initiative of the
implementation of SDN solution, but there is a question of the
best performance onto the more automated network
architecture and what is to be considered and applied within. In
many cases, the software-defined solution does not need to
look any different from the conventional network. It is
important to define the impact of the SDN model on the
existing services and to use samples of applications that
connect and checkout the continuity of the service before and
after the implementation. That will prevent the disruption of
service and eliminate all implementation-related problems.
However, regardless of the number of preparations, some of
the circumstances are still unpredictable. Therefore, it is
important to have an alternative plan that allows the
administrators to return the previous network configuration.
The implementation of SDN without the proper knowledge
represents a certain risk, but the ignoring of SDN represents a
significant risk for IT organizations and IT experts. In the case
of IT organizations, the risk is that they will not be able to
solve the problems for which SDN has been designed, which
results in the lack of competitiveness. The risk for IT
professionals is that they can fall behind in learning and
education related to this approach and thus will not have the
competitive value for the current or for the future employer.
SDN security needs to be built into the architecture, as well as
delivered as a service to protect the availability, integrity, and
privacy of all connected resources (and information).

According to previous analyses and research it can be
concluded that in the upcoming period SDN will have a
significant impact on corporate networks and roles of the
network experts. Because of that, it is important that the IT
organizations and the IT experts develop a plan for the SDN
implementation. The implementation may vary depending on
the size and the complexity of the network, as well as the
experience of the IT team. New skills and additional training is
needed. With proper planning, most organizations can quickly
and easily take advantage of SDN solutions.

V. SIMULATION DEMONSTRATION OF SOFTWARE-DEFINED

NETWORK OPERATION

A. Development of the network topology

Graphical Network Simulator 3 (GNS3) [17] was used for
the purpose of creation of the conventional network topologies

and the network configuration switches. It will be installed on
the Linux OS, which allows the combination of virtual and real
devices and allows the simulation of complex networks. It uses
Dynamics emulation software to simulate Cisco's Internetwork
Operating System (Cisco IOS). The software used in the
configuration of the switches is used in the actual physical
devices. The network topology used to compare the
conventional configuration and the SDN network consists of
five switches and two Linux PCs connected as shown in
Figure 2.

Figure 2 - Network topology of conventional network and SDN
network [18]

By using GNS3 simulator, a network is created as shown in
Figure 3. Before any traffic can flow from PC-1 to PC-2, it is
necessary to configure all the switches, to make sure that the
traffic from PC-1 to PC-2 flows via the shortest route, which is
made possible by using FIB (Forwarding Information Base) on
each switch.

Figure 3 - Conventional network topology in GNS3 simulator

Once the ports, IP addresses and configured switches are
assigned, the network topology must be learned by all
switches.

Even though the network topology contains a small number
of network devices and is not complex, it can be concluded that
the configuration of larger networks has higher demands for
the number of connections and the time. If the network consists
of a thousand network devices and hosts, which is very
frequent in today’s networks, every switch and every flow has
to be particularly configured for the appropriate traffic. This
process takes a number of procedures and increases the total
time. Within the SDN solution all the procedures, from switch
configuration and learning of network topology, are performed
by SDN controller from one centralized point and within a very
short period of time, which makes it an advantage over the
conventional networks. The only condition is that switch has to

be connected onto the SDN controller, and all the other work is
performed by the controller itself.

The development of the SDN network topology is
performed by Mininet [8] emulator in order to show how the
controller operates. This emulator allows creation of virtual
networks and initiates a real kernel, switch and the application
code on virtual machine, which is in this case VM Virtual Box.
Mininet is installed on the Linux OS and uses an appropriate
script in Python programming language to initiate previously
created network topology. The SDN controller is needed with
the use of Mininet. For the purpose of testing OpenDaylight
controller was used [19]. The topology consists of five Open
vSwitches and two Linux PCs all connected as shown in Figure
2. After successful initiation of Mininet, it is necessary to start
your own creation of topology specially intended for this case
and written in Python programming language under the name
of TestTopology. The command for initiation of the test
network is:

sudo mn –mac –controller=remote,ip=192.168.165.1,port=663
–custom TestTopology.py –topo=mytopo, and the meaning of
the individual parts of the command are:

• sudo mn: initiates command with root privilege

• --mac: sets MAC addresses of hosts similar to IP
addresses, which makes it easier to read the generated
traffic shown in Wireshark

• --controller=remote: informs the Mininet that SDN is
not on the local computer

• Ip=192.168.165.1: IP address of the SDN controller,
as well as the IP address of the host computer where
the controller is started

• Port=6633: Standard TCP port for connecting the
switch onto the controller

• --custom TestTopology.py –topo=mytopo: initiates its
own topology written in Python.

By entering an accurate code, Mininet will create the
network by adding controllers, hosts, switches and links that
will configure the hosts and initiate switches. Figure 4 shows
the visibility of switches and their connection in the
OpenDaylight controller.

Figure 4 - The learned nodes in OpenDaylight controller

Even though this is about the creation of a virtual network,
the used controller is also used in real physical networks. It is

evident that this process facilitates the processes of a
conventional network, where every single switch has to be
configured manually, which is within the SDN controller
quickly performed by separating the control planes from the
data planes, which are still present within the switch. After the
controller knows about the switch, the next step is to gain
insight into the entire view of the network (i.e. learn about the
details of switch devices and about the connections between
them). This is conducted in two steps: the first step is to learn
about the individual switches, and the second is to learn about
the connections between the switches. The first step is
performed by feature request and feature reply mechanisms.
The controller sends feature-request message at the moment the
so-called TCP handshake is conducted. The newly connected
switch replies with the feature-reply message. The feature-
reply message informs the controller about the capabilities of
the switch, details of the port and the available operations. In
the next step, the identification of the switch connections is
made by Link Layer Discovery Protocol (LLDP) frames that
are sent onto the connected ports of switches.

B. Performance measurement

Measuring of the performances includes two different
scenarios, where the measurement of the permeability and
packet delay within the client server communication based on
the TCP protocol will be the first one, and the second one will
measure the packet loss based on the UDP protocol. Scenario 2
is different in ending of the link triggered by closing the port
between Switch 1 and Switch 5. Network topologies of
conventional and SDN network are made in GNS3 simulator,
to ensure the same conditions, on 4 Linux PCs by using real
software with Cisco switches and Open vSwitch software
based on SDN switches. Figure 5 shows the presentation of the
used topology for Scenario 1.

Figure 5 - Topology for Scenario 1

Conventional network is made of the following devices:

• 10 Cisco c3725 Ethernet Switch Router, and

• 4 Linux PC (PC-1 and PC-3 as client, PC-2 and PC-4
as server).

SDN network is made of the following devices and controllers:

• 10 Open vSwitch 1.11,

• 4 Linux PC (PC-1 and PC-3 as client, PC-2 and PC-4
as server), and

• OpenDaylight controller.

The traffic is generated within 5 minutes by the Distributed
Internet Traffic Generator (D-ITG) [20] triggered on all PCs.

Before the measurement takes place, the necessary
procedures are needed in order to enable the measurement, and
these are:

1) To prevent deviations in measurement, all of the PCs

are supposed to have their clocks synchronized and linked to

the public Network Time Protocol (NTP) servers. For that

reason, it is necessary to create gateways towards the Internet.

That will be conducted by Cloud in GNS3 simulator, which is

in fact a tunnel between the host computer and Linux PC. The

IP address on the TAP host computer is also a default gateway

for virtual Linux PC. In order for Linux to retrieve certain web

addresses it is important to define the DNS server as the

Google DNS server. The NTP server is a reference for the

synchronization of the clock and that is, in this case, CARNET

NTP server located in Zagreb (University Computing Centre

of the University of Zagreb).

2) Creating of the Linux Bridge: Open vSwitch used in the

SDN network is Virtual Box Appliance in the GNS3

simulator. Used ports must be added to Linux bridge so that

the switches could communicate with OpenDaylight

controller. After having performed successful needed

configurations, the generator on PC-1 and PC-3 is initiated as

sender, and the PC-2 and PC-4 as receiver.

The topology used for the presentation of Scenario 2 is

shown in Figure 6. The settings are the same as inScenario 1,
the only difference being the existence of one sender (PC-1)
and one receiver (PC-2) and the use of UDP protocol.

Figure 6 - Topology for Scenario 2

The measurement results are shown in Table 1 and Table 2.
The results in the first measurement show that SDN offers
equal performances if set conditions are identical. There is a
slight difference in numbers because, since the topology is

known in advance, the first packets in the beginning of the
SDN solution will be sent faster than they would be in a
conventional network. The difference is that the switches must
first learn the topology and this creates the delay in relation to
SDN. Although the conditions were identical and the used
software real, these results in reality can be differentiated and
vary because of influencing factors such as distance, links and,
of course, the used hardware.

TABLE I. MEASUREMENT RESULTS FOR SCENARIO 1

Scenario 1

Parameters Traditional network SDN network

Total packets 209,253 222,052

Avg. delay (s) 0.004798 0.004424

Bytes received 214,275,072 227,381,248

Avg. bitrate (Kbit/s) 5,714.098545 6,063.7873

Avg. packet rate (pkt/s) 697.521795 740.20841

TABLE II. MEASUREMENT RESULTS FOR SCENARIO 2

Scenario 2

 Parameters Traditional network SDN network

Total packets 265,425 285,875

Avg. delay (s) 0.002623 0.002791

Bytes received 271,795,200 323,456,000

Avg. bitrate (Kbit/s) 7,248.044165 8,625.693047

Avg. packet rate (pkt/s) 884.771016 952.941046

Packets dropped 59,920 (18.42%) 544 (0.19%)

It is very difficult to compare a traditional network with
SDN on the basis of the measured performances because SDN
is designed with the objective of flexible and easy network
management. The SDN solutions are different depending on
the manufacturers and the network can be configured according
to the need. The performance is adjustable and it depends on
the purpose of the organization and why it needs to use
network services.

The second measurement shows higher difference in the
results. While for SDN the loss was only 0.19%, for the
conventional network it was 18.42%. The difference in reality
can oscillate, but the SDN solution will definitely yield better
results. Knowing the concept of the topology, the controller
knows where to direct the packet if the link is disrupted or a
certain port is closed, and its performance is very fast. In
conventional switch devices, the topology has to be primarily
learned because the switch operates only with the nearest unit
and has no knowledge of the current state in the network. STP
has four conditions, and these are: blocking, listening, learning
and forwarding. Once the port is blocked it remains in that
state for the next 20 seconds. Then it spends the next 15
seconds in the state of learning. If these two states are summed
together with the Hello time of 2 seconds, the final time is 52
seconds. The difference in the measurement results is therefore
high because the switches have to learn the topology, which is
not necessary in case of SDN and this is an additional
advantage.

VI. CONCLUSION

The software-defined network includes the architecture
which can be described as dynamic, economic and adjustable
which makes it ideal for the dynamic nature of today’s
applications. Separation of the control planes and data planes
allows directly programmable network control and separation
of the low-layer infrastructure for the purpose of applications
and network services. SDN offers centralized view onto the
network, providing the controller with SDN so that they can
operate as control planes, which makes them a strategic control
point within the SDN network. It communicates with
switches/routers by using the southbound API, and with
applications by using the northbound API. The centralized,
programmable SDN environments are easily adjustable to the
variable needs of the company. The key advantages of SDN are
agility and flexibility due to its separated architecture. SDN
allows the organizations to quickly develop new applications,
services and infrastructures in order to satisfy the variable
business goals, flexible selection and operation of the network.
Implementing the SDN solution requires good planning.
Organizations should have clear idea about the advantages that
are planned to be achieved by implementing SDN. In many
cases, software-defined solution does not have to look different
from conventional network, and SDN solutions are different
depending on the manufacturers.

During network configuration there are substantial
differences that could be noted between SDN and the
conventional network. In conventional network every switch
must be configured separately, which requires more procedures
and time. If the network consists of a thousand network devices
and hosts, which is very common today, every switch has to be
individually configured according to the current traffic flow
and its changes, which additionally increases the number of
procedures and the needed time.

Within the SDN solution, all of the listed procedures, from
switch configuration and learning of new topology, are
performed by SDN controller from one centralized point in the
short time of the first connection. This concept is the main
advantage of the SDN network in relation to conventional
networks. The switch must be connected onto the SDN
controller and the rest is performed by the controller itself. The
advantage of learning of the entire topology and the view onto
the entire network is shown on the basis of the results of
Scenario 2 where the difference of the packet loss is high in
regard to a conventional network.

REFERENCES

[1] B. Yeong Yoon, S.M. Kim, J.H. Lee: “Transport SDN Architecture for
Distributed Cloud Services”, The 12th International Conference on
Optical Internet Proceedings (COIN), IEEE, Jeju, South Korea, 2014,
pp, 1-2.

[2] S. Zhang, C. Kai, L. Song: “SDN based uniform network architecture
for future wireless networks”, Conference proceedings of International
Conference on Computing Communication and Networking
Technologies (ICCCNT 2014), Hefei, China, 2014, pp. 398-402.

[3] G. Sun, G. Liu, Y. Wang: “SDN architecture for cognitive radio
networks“, Conference proceedings of 1st International Workshop on
Cognitive Cellular Systems (CCS), IEEE, Duisburg, Germany, 2014, pp
56-60.

[4] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, N. Venkatasubramanian:
“A Software Defined Networking Architecture for the Internet-of-
Things”, Conference proceedings of Network Operations and
Management Symposium (NOMS), IEEE, Krakow, Poland, 2014, pp. 1-
9.

[5] V.R. Tadinada: “Software Defined Networking: Redefining the Future
of Internet in IoT and Cloud Era”, International Conference on Future
Internet of Things and Cloud (FiCloud), IEEE, Barcelona, Spain, 2014,
pp. 296-301.

[6] H. Huang, J. Zhu, L. Zhang: “An SDN_based management framework
for IoT devices”, 25th IET Irish Signals & Systems Conference 2014
and China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014), IET Limerick,
Ireland, 2014, pp. 175-179.

[7] OpenNet, available at: http://github.com/dlinknctu/OpenNet
(25.06.2015)

[8] Mininet emulator, available at: http://www.mininet.org (17.06.2015)

[9] Ns-3, available at: https://www.nsnam.org/news/release-3-1/
(17.06.2015)

[10] EstiNet, available at: http://www.estinet.com/ (20.06.2015)

[11] M.C. Chan, J.X. Huang, T. Kuo, L-H. Yen, C-C Tseng: “OpenNet: A
Simulator for Software-Defined Wireless Local Area Network”, IEEE
Wireless Communications and Networking Conference, Istanbul,
Turkey, 2014, pp. 3332-3336.

[12] M.J. Todorović, N. D. Krajnović: “Simulation Analysis of SDN
Network Capabilities”, 21st Telecommunications forum TELFOR 2013,
Serbia, Belgrade, 2013, pp. 38-41.

[13] ONF White Paper: “Software-Defined Networking: The New Norm for
Networks”, Open Networking Foundation, Palo Alto, CA, USA, 2012

[14] Cisco Systems: “Software-Defined Networking: Why We Like It and
How We Are Building On It”, White Paper, Cisco Systems, Inc., 2013

[15] S. Agarwal, M. Kodialam, T.V. Lakshman: “Traffic Engineering in
Software Defined Networks”, International Conference on Computer
Communications (INFOCOM), Conference proceedings of INFOCOM,
IEEE, Turin, Italy, 2013, pp. 2211-2219.

[16] M.R. Nascimento, C.E. Rothenberg, M.R. Salvador, C.N.A. Correa, S.C.
De Lucena, M.F. Magalhaes: “Virtual Routers as a Service: the
RouteFlow approach leveraging Software-Defined Networks”,
Proceedings of the 6th International Conference on Future Internet
Technologies, New York, NY, USA, 2011, pp. 34-37.

[17] Graphical Network Simulator 3, available at: http://www.gns3.com
(20.06.2015)

[18] A. Pušeljić: “Analysis of Characteristics and Application of Software
Defined Networks”, Master thesis, Faculty of Transport and Traffic
Sciences, University of Zagreb, Zagreb, 2015, unpublished.

[19] OpenDaylight Controller, available at: http://www.opendaylight.org
(02.07.2015)

[20] Distributed Internet Traffic Generator, available at:
http://traffic.comics.unina.it/software/itg (25.06.2015)

